
Machine Learning Accelerates the Discovery of Design Rules and
Exceptions in Stable Metal−Oxo Intermediate Formation
Aditya Nandy,†,‡ Jiazhou Zhu,§ Jon Paul Janet,† Chenru Duan,†,‡ Rachel B. Getman,*,§

and Heather J. Kulik*,†

†Department of Chemical Engineering and ‡Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, United States
§Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States

*S Supporting Information

ABSTRACT: Metal−oxo moieties are important catalytic
intermediates in the selective partial oxidation of hydrocarbons
and in water splitting. Stable metal−oxo species have reactive
properties that vary depending on the spin state of the metal,
complicating the development of structure−property relation-
ships. To overcome these challenges, we train machine-learning
(ML) models capable of predicting metal−oxo formation
energies across a range of first-row metals, oxidation states,
and spin states. Using connectivity-only features tailored for
inorganic chemistry as inputs to kernel ridge regression or
artificial neural network (ANN) ML models, we achieve good
mean absolute errors (4−5 kcal/mol) on set-aside test data
across a range of ligand orientations. Analysis of feature
importance for oxo formation energy prediction reveals the
dominance of nonlocal, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or
ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing expected trends in oxo formation
energetics, such as destabilization of the metal−oxo species with increasing d-filling, as well as exceptions, such as weak
correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in
reactivity. We carry out uncertainty-aware evolutionary optimization using the ANN to explore a >37 000 candidate catalyst
space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT),
including counterintuitive oxo formation energies for oxidatively stable complexes. This approach doubles the density of
confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven
discovery to uncover catalyst design rules and exceptions.

KEYWORDS: metal−oxo species, machine learning, density functional theory, spin-state-dependent reactivity,
transition metal catalysis, artificial neural networks

1. INTRODUCTION

The selective partial oxidation of alkanes (e.g., methane to
methanol1,2) represents one of the foremost challenges in
catalysis. Despite intense focus,3−8 the design of highly
selective and active synthetic catalysts has been limited by
overoxidation as a result of the higher reactivity of products
than reactants. Conversely, it is known that enzymes readily
catalyze selective partial oxidation through the formation of
high-valent metal−oxo (e.g., Fe(IV)O) species.9−12 These
biological catalysts have motivated the development of
bioinspired molecular13−17 and extended18 (e.g., zeolite19 or
metal−organic framework20) catalysts for C−H activation.
High-valent21 (e.g., Fe(IV),22,23 Fe(V),24,25 Mn(IV),26 or

Mn(V)27,28) metal−oxo species are believed to be central to
selective partial oxidation, and the difficulty with which they
are isolated and characterized spectroscopically23,29−32 moti-

vates computational screening33,34 and characterization.35−37

High-throughput computational catalyst screening can extend
beyond the small number of complexes and materials that have
been demonstrated experimentally to support formation of
high-valent metal−oxo species, instead permitting the discov-
ery of design rules across the periodic table.38,39 Such an effort
is motivated, for example, by the fact that both late (e.g., Co)
and low-valent (e.g., Fe(III)−O) transition metals had been
thought to be nearing the “oxo wall”,40−43 but an increasing
number of Co(IV)O complexes have been recently
characterized.44−46 The computational study of such open-
shell species with variable oxidation state is made more
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complex by the role of electron spin, an inherently quantum-
mechanical property. Distinct metal−oxo spin states can have
strongly differing reactivity,32,47−52 with the highest rates
expected for high-spin (i.e., quintet) Fe(IV)O complexes
that mimic enzymatic systems.53 For each spin state and
complex, stability can be as much of a challenge,16,54−57 with
some of the most reactive species deactivating significantly
faster than less reactive species.
Large-scale computational screening33,58−70 has the poten-

tial to uncover which chemical environments enable formation
of stable metal−oxo species. Widely successful approaches in
computational screening for heterogeneous catalysis, such as
linear scaling relationships65,68,71−77 or established quantum
mechanical (QM) descriptors (e.g., the d-band center78−80 or
other frontier orbital properties61,70,81), are expected82 to be
limited in their capacity to describe spin-state-dependent
metal−oxo formation. Indeed, even for a fixed spin state, small
geometric distortions have been shown to cause large
deviations in linear free energy relationships and alter the
frontier orbital energies67 relevant for metal−oxo formation.
Noncovalent interactions relevant in single-site catalysts have
also been shown to disrupt scaling relations.72,73,76,77,83−87 A
screen of multiple metal, spin, and oxidation states in
combination with a wide range of ligands is motivated by
the desire to reveal the extent to which conventional scaling
rules apply or may be broken in selective partial oxidation, but
the sheer combinatorial challenge of such a screen requires a
different approach than standard first-principles screening.
Machine-learning (ML) property prediction models have

the promise of accelerating discovery by enabling property
prediction in seconds instead of the hours required by first-
principles computational screening.88−92 In recent years, ML
has been increasingly applied to accelerate mechanism93,94 or
materials95−97 discovery of closed-shell and/or bulk metal
heterogeneous catalysts. Significant progress has also been
made in the prediction of fundamentally quantum-mechanical
properties of open-shell transition metal complexes, such as
frontier orbital energies,98,99 ionization or redox poten-
tials,92,100,101 and spin-state ordering.102−104 Successful ML
models have not yet been demonstrated in challenging open-
shell, single-site catalysts that exhibit spin-state-dependent
reactivity. It is in this area that nonlinear ML models may have
the greatest promise to accelerate high-throughput screening
due to the weak predictive capability of linear scaling relations,
which are frequently distorted or broken in isolated, under-
coordinated metal sites.67,105,106

In this work, we train ML models to predict spin-state-
dependent metal−oxo formation energies in octahedral model
catalysts. Using these models, we reveal unexpected structure−
property trends in spin-state-dependent reactivity and the
limits of the relationships between metal−oxo formation and a
conventionally used QM descriptor (i.e., a frontier orbital
energy). We then explore large (ca. 37 000) candidate catalyst
spaces to discover wholly new complexes with unexpected
combinations of oxidative stability and oxo formation energy.

2. CATALYSIS MODELS
To evaluate the difficulty of machine-learning tasks for open-
shell transition metal catalysis, we focus on the reaction energy
for the formation of high-valent oxo species essential in C−H
activation.21−28 We define this oxo formation energy, ΔEoxo, as
the difference in total electronic energy between a high-valent
oxo species and its corresponding empty-site structure in the

same spin state with respect to a triplet oxygen reference,
where the empty-site metal’s oxidation state is n = 2 or 3

Δ = + = − ··· −E E n E n E(M( 2) O) (M( ) )
1
2

( O )oxo
3

2 (1)

Two data sets, the equatorially symmetric data set and the
equatorially asymmetric data set, were designed to probe a
wide range of effects on ΔEoxo values in octahedral, open-shell
transition metal complexes. In addition to the machine-
learning models, these two data sets represent 1200 new
catalyst energetic evaluations carried out solely for the present
work.
The equatorially symmetric (ES) data set consists of 712

ΔEoxo values for complexes with one equatorial and one distal
axial ligand type (Figure 1). Total complex charge varies across

catalyst models with individual ligand charge but is preserved
between the oxo (M(IV)O or M(V)O) and the empty-
site (M(II) or M(III)) complexes (M = Cr, Mn, Fe, or Co,
Figure 2). Complexes are comprised of up to two distinct
ligands from a pool of 29 ligands: 9 negatively charged (e.g.,
acac, CN−, Cl−, and pyrrole) and 20 neutral (e.g., CO, NH3,
bipyridine, or furan) (Figure 2). This ligand pool was designed
to broadly sample ligand fields and enable comparison to prior
work.67,102,103 All bidentate or tetradentate ligands can only
serve as equatorial ligands.
For this data set, high-valent oxo and empty-site species

were studied in their low-spin (LS), intermediate-spin (IS),
and high-spin (HS) states, where defined, for both M(n+2)
and M(n) oxidation states: doublet for d1 Cr(V) and d3

Cr(III), singlet/triplet for d2 Cr(IV)/Mn(V) and d4 Cr(II)/
Mn(III), doublet/quartet for d3 Mn(IV)/Fe(V) and d5

Mn(II)/Fe(III), singlet/triplet/quintet for d4 Fe(IV)/Co(V)
and d6 Fe(II)/Co(III), and doublet/quartet for d5 Co(IV) and
d7 Co(II). The final data set is broadly balanced across each of
these metals, oxidation states, and spin states (Supporting
Information Figure S1).
The equatorially asymmetric (EA) data set consists of 488

ΔEoxo values constructed from a smaller pool of 18 ligand
types, 7 of which overlap with the ES data set (Figures 1 and 2

Figure 1. Representative structures for the equatorially symmetric
(top) and equatorially asymmetric (bottom) data sets, which each
have up to two unique ligand types, L1 and L2 (here L1 = CN−, L2 =
NH3). The metal is shown as an orange sphere, and other atoms are
shown as sticks, with oxygen in red, nitrogen in blue, and carbon in
gray.
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and Supporting Information Table S1). Catalyst models
consist of two ligand types in the following arrangements:
(i) M(IV)O(L12L22)eq(L2)ax, where identical ligands lie
trans with respect to each other in the equatorial (eq) plane,
and (ii) M(IV)O(L11L23)eq(L1)ax, where the ligand in the
distal axial position is identical to one of the four equatorial
ligands (Figure 1). For either configuration, L1 is selected from
12 possible negatively charged ligands (e.g., imidazolides, Cl−,
CN−) and L2 is selected from 6 neutral ligands (e.g., H2O,
CO, pyridine, see Figures 1 and 2). This data set size is smaller
in part due to consideration of only the M(IV)O species and
smaller ligand pool, but it includes a wider range of first-row
metals (i.e., M = Cr, Mn, Fe, Co, Ni, or Cu), including those
past the so-called “oxo wall”.41−43

For this data set, high-valent oxo and empty-site species
were also studied in their LS, IS, and HS states with the
additional relevant definitions: singlet/triplet for d6 Ni(IV) and
d8 Ni(II) and doublet for d7 Cu(IV) and d9 Cu(II). The final
data set is broadly balanced across each of these metal,
oxidation state, and spin states (Supporting Information Figure
S2).

3. METHODS
3.1. Simulation Details. 3.1.1. ES Data Set. All gas-phase

geometry optimizations and single-point energy calculations in
the ES data set were performed using density functional theory
(DFT) with TeraChem.107,108 The B3LYP109−111 global
hybrid functional was employed with the empirical D3
dispersion correction112 using Becke−Johnson113−115 damp-
ing. The LANL2DZ116 effective core potential was used for
transition metals, and the 6-31G* basis set was employed for
remaining atoms to enable rapid data set generation and
comparison to prior inorganic chemistry machine-learning
studies.98,101−103 Except for singlet spin states, all simulations

were carried out in an unrestricted formalism with level shifting
(Supporting Information Text S1). All initial geometries were
generated with molSimplify,117 as automated with mAD98 for
up to five 24 h run-time job resubmissions. Geometry
optimizations of the oxo species were carried out with
geometry checks98 prior to each resubmission, and single-
point energies for the empty-site configuration were obtained
only on the oxo structures that passed these checks
(Supporting Information Text S1 and Table S2). From 1650
initial oxo/empty-site structure pairs, we excluded pairs if
either structure did not satisfy specific criteria for geometry
quality or ⟨S2⟩ values, as in prior work,92,98,103 as well as metal
spin density localized on the ligand instead of the metal,
leading to a total data set size of 712 ΔEoxo values (Supporting
Information Table S3 and Figure S3).

3.1.2. EA Data Set. The EA data set was independently
generated by some of the authors and therefore followed a
distinct established protocol.70,118 All gas-phase geometry
optimizations and single-point energy calculations in the EA
data set were performed using DFT in Gaussian09 Rev.
B.01119 with the M06-L120 functional and def2-TZVP121 basis
set to enable comparison to prior studies. All spin states,
including singlets, were treated with an unrestricted formalism.
For this data set, constrained geometry optimizations with all
other settings as default were performed on the empty-site
structure to enforce 90° angles for all ligand−metal−ligand
angles between adjacent ligands. Upon convergence of the
empty-site structure, an oxygen atom was added to the
structure in the axial position and only the metal−oxo bond
was optimized with all other atoms frozen. This data set was
verified by checking manually for proton transfer or ligand
detachment.

3.2. Machine-Learning Models and Representations.
The molecular representations used in this work are revised
autocorrelations (RACs),101 which have been demonstrated
for prediction of spin-splitting energetics,101 redox or
ionization potentials,100,101 frontier orbital energies,98 and
bond lengths.101 RACs are extended101 autocorrelations122

tailored for transition metal chemistry that are products and
differences on the molecular graph. In practice, around 150
RAC descriptors make up the complete feature set prior to
feature selection (see details in Supporting Information Text
S2).
Two types of ML models are trained in this work: (i) kernel

ridge regression (KRR) models are used for feature selection
and analysis, and (ii) artificial neural network (ANN) models
are used for catalyst space exploration. The KRR models were
trained on full RACs101 and feature-selected subsets obtained
with random forest-ranked recursive feature addition (RF-
RFA) following an established protocol98 (Supporting
Information Text S1 and Figure S4). KRR training used
scikit-learn123 with grid search to obtain regularization, α, and
inverse kernel width, γ, hyperparameters (Supporting In-
formation Table S4). ANN models were trained on the full
RACs in Keras124 with TensorFlow125 as the backend
(Supporting Information Figures S5−S8 and Tables S5 and
S6). Hyperparameters and ANN architectures were optimized
using the HyperOpt126 Python library with the Adam
optimizer127 and dropout regularization. For all models, we
used an 80/20 train/test partition, and the ranges of the
training data were used to normalize all inputs and outputs.
Decision tree analysis in scikit-learn123 used a maximum split

Figure 2. Ligands studied in this work: in the equatorially symmetric
data set only (red rectangle), equatorially asymmetric data set only
(blue rectangle), and in both sets (gray rectangle). Ligand atoms that
coordinate the metal are shaded with translucent circles colored by
element: red for oxygen, dark blue for nitrogen, orange for
phosphorus, yellow for sulfur, gray for carbon, light blue for fluorine,
dark red for bromine, and purple for iodine. Ligand charges are
denoted on the figure.
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of five and a maximum tree depth of two, which were selected
to reveal dominant trends.

4. RESULTS AND DISCUSSION

4.1. Data Sets and Model Performance. The range of
ΔEoxo values observed in the 712 equatorially symmetric and
488 equatorially asymmetric data set complexes is comparable,
from as low as −105 kcal/mol to as high as 75 kcal/mol
(Supporting Information Figure S9). Across both data sets Cr
and Mn complexes in all spin states have the most exothermic
ΔEoxo values, midrow Fe or Co complexes are more variable,
and ΔEoxo is exclusively endothermic for the later Ni and Cu
transition metals. Although the metal is a strong determinant
in ΔEoxo favorability, the large variation within each metal
motivates the training of ML models and further evaluation of
chemical trends.
We start by extending our prior approach of employing RAC

features with KRR models in the prediction of octahedral spin-
splitting energetics,101 redox or ionization potential,92,101

metal−ligand bond length,101 and frontier orbital energetics.98

Assessing the degree to which this RAC/KRR approach is also
predictive for ΔEoxo will (i) identify if additional complexities
arise for the learning task of spin-state-dependent catalyst
energetics and (ii) determine if catalytic structure−property
relationships differ from those obtained previously for other
properties. Thus, we repeat our approach and make
comparisons throughout to both model performance and
observations from prior work.92,98,101 The range of reaction
energies in our ML model training data is comparable to those
we studied103 in ML models for spin-splitting energy (from
−55 to 90 kcal/mol, Supporting Information Figure S10).
Feature selection from the full RAC feature set (ca. 150

descriptors) improves KRR model prediction errors98,101 and
provides insight into the most important descriptors for
property prediction. Indeed, train/test mean absolute errors
(MAEs) with the full set of RACs (7.5 and 9.5 kcal/mol) for
the ES data set are reduced after RF-RFA feature selection (see
section 3). A model trained on only the 22 features selected
with RF-RFA has significantly lower train and test MAEs (2.2
and 5.5 kcal/mol), consistent with prior work98 (Figure 3 and
Supporting Information Figure S11 and Table S7). The full
RAC/KRR performance is slightly better for the smaller EA

data set (MAEs, train 2.3 and test 6.5 kcal/mol), but it is
similarly improved after feature selection to 14 features
(MAEs, train 1.5 and test 4.3 kcal/mol, Figure 3 and
Supporting Information Figure S11, Table S8, and Text S3).
Decomposing errors by metal, oxidation state, and ligand

identity provides insight into whether the RF-RFA/KRR
model generalizes more poorly to specific metal−oxo
complexes (Supporting Information Figures S12 and S13).
The ES errors are lower for M(IV)O complexes and higher
for M(V)O complexes absent from the EA data set
(Supporting Information Figures S12 and S13). Nearly all of
the high (>10 kcal/mol, ca. 30 cases) train or test set errors in
the ES data set are indeed M(V)O complexes with strong-
field distal axial ligands (e.g., NMe3, CO, pisc) or negatively
charged (e.g., Cl−, CN−, acac, pyrrole) equatorial ligands.
Across both data sets, test errors are generally lower for Mn
and Fe in comparison to earlier or later metals (Supporting
Information Figures S12 and S13). Comparison of errors
across the EA data set ligand arrangements indicates slightly
higher errors for the more asymmetric MO(L11L23)eq(L1)ax
configuration, likely due to its lower abundance in the data set
(37%, Supporting Information Figures S13 and S14).
Over both the ES and EA data sets, test MAEs of 4.3 and 5.8

kcal/mol are somewhat larger than the smallest we observed
for spin-splitting energies101,103 (ca. 1−3 kcal/mol) but
roughly comparable to the 4 kcal/mol MAEs we observed
for gas-phase ionization potential,101 redox potential predic-
tions,101 or frontier orbital energies.98 Given the wide diversity
of ligand charges, structures, and metals as well as the fact that
up to three ΔEoxo values are predicted for each complex, the
performance of the present KRR models is unexpectedly good.
Spin-state-dependent reaction energetics of metal−oxo for-
mation do not appear to be more challenging to predict than
other properties of transition metal complexes.

4.2. Features that Influence Oxo Formation Energies.
Beyond test set performance, comparison of RFA-selected
features (oxo-22 for ES, oxo-14 for EA) reveals the length scale
and character of molecular features that drive ΔEoxo values
(Figure 4, Supporting Information Tables S7 and S8). As in
previous work,101 the five heuristic atomic properties we
correlate in approximately 150 RACs are (i) I, the identity, (ii)
T, topology (i.e., connectivity), (iii) χ, Pauling electro-
negativity, (iv) S, the covalent radius, and (v) Z, the nuclear
charge. These quantities are derived from products and
differences of atomic properties on the molecular graph that
we obtain either over the whole molecule (i.e., global features)
or by counting bond paths outward from the metal center (e.g.,
first, second, or third coordination-sphere RACs, see
Supporting Information Text S2). We compare the oxo-
selected sets to a 26 RAC feature set (URAC-26) that was
selected on spin-splitting data but has been shown to have the
best balanced performance on ionization potential, redox
potential, and bond length property prediction92,101 (Figure 4).
As could be expected from our preliminary analysis of the
ΔEoxo data set, properties of the metal, oxidation state, and spin
are essential (ca. 20−25% of all features) and of comparable
weight to those in URAC-26 (Figure 4, Supporting
Information Table S9).
We previously found metal-coordinating atoms in the first

coordination sphere to be important in URAC-26 and related
metal-local feature sets for prediction of spin splitting,103 an
observation that holds for the ES oxo-22 feature set but not for
the EA oxo-14 feature set (Figure 4). Differences in feature

Figure 3. KRR model ΔEoxo predictions compared to the DFT-
calculated values for the equatorially symmetric (left) and equatorially
asymmetric (right) data sets with RACs obtained from feature
selection on each set, respectively. Number of training points used
after the 80/20 train/test split is indicated in the inset along with the
train (gray circles) and test (blue circles) mean absolute error (MAE)
in kcal/mol. A black dotted parity line is also shown.
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selection over the ES and EA data sets can be attributed to the
reduced size and variation of chemical composition for the EA
data set (Supporting Information Text S4, Figures S15−S18,
and Tables S10 and S11). Overall, feature analysis is broadly
useful for interpreting data sets and ML models, but
transferability of feature sets across different KRR prediction
models is generally observed (Supporting Information Tables
S9 and S12 and Figure S19).
The ΔEoxo-selected features distinguish themselves from

URAC-26 in their increased weight (ca. 35% vs 20%) of third
coordination sphere or global features (Figure 4). Across the
ES and EA data sets, these differences appear to be most
critical to encoding through-bond ligand variations, as none of
these metal-distant atoms are sufficiently proximal to form
noncovalent interactions with the M(IV/V)O spe-
cies.67,85−87 This feature analysis reveals oxo formation design
rules: ΔEoxo is affected not just by metal identity but also
relatively metal-distant, through-bond electronic101 (i.e., χ or
Z) ligand functionalization, expanding upon previous exper-
imental observations.128

4.3. Relation to QM Descriptors for Oxo Formation.
To accelerate and simplify computational screening, the β-
HOMO level of Fe(II) complexes has been used as an estimate
of the favorability of quintet Fe(IV)O complex formation as
long as this level has significant d character.70 If this
approximation holds70 it provides an intuitive rationale that
the metal must be easily oxidized for the high-valent species to
form. Across the ES data set, most β-HOMO levels of Fe(II)
complexes indeed have significant d character, with a few
exceptions for conjugated ligands (e.g., pisc, bifuran, and
cyanopyridine), but this observation holds less well across
metals (Supporting Information Figures S20 and S21 and
Table S13). A large range of β-HOMO level values is observed
from around −30 to +8 eV, where the unphysically positive β-
HOMO levels correspond to cases where high negative
complex charge leads to poorly bound electrons at the hybrid
DFT level of theory (Supporting Information Figure
S22).129,130 Over the full ES data set, ΔEoxo and the β-
HOMO level correlate only weakly overall and within a single
metal, regardless of d character in the orbital (Figure 5).
As an example of the ease with which this β-HOMO/ΔEoxo

design rule may be broken, S = 0 Co(V)O(CO)4(NH3) and
Mn(V)O(CO)5 have comparably deep β-HOMO levels
(from ca. −26 to −27 eV), but ΔEoxo is unfavorable by the

same magnitude for Co(V)O (55.4 kcal/mol) as it is
favorable for Mn(V)O (−54.4 kcal/mol, Figure 5). Weaker
field ligands (e.g., S = 1/2 Fe(V)O(acac)2(CN

−) and S = 1
Cr(IV)O(H2O)4(Cl

−)) correspond to shallower β-HOMO
levels (e.g., from −7 to −9 eV), but ΔEoxo values span a large
range of endothermic and exothermic values for these
complexes (Fe(V)O 23.9 kcal/mol, Cr(IV)O 46.5 kcal/
mol, Figure 5). Even within a fixed metal, variations of tens of
electronvolts of the β-HOMO level can be observed at fixed
ΔEoxo values or 50−100 kcal/mol variations of ΔEoxo at fixed
β-HOMO level; these observations suggest the possibility of
orthogonally tuning frontier orbital energies (e.g., for resting

Figure 4. Pie charts of the URAC (26 features, left) features selected in prior work92,101 compared to features selected by RF-RFA for oxo
formation on the equatorially symmetric data set (22 features, middle) or the equatorially asymmetric data set (14 features, right). Features are
grouped by the most distant atoms present: metal in blue, first coordination sphere in red, second coordination sphere in green, third coordination
sphere in orange, or global features in gray. Within each distance category, the property (i.e., χ, S, T, or Z) is also indicated, and oxidation state (ox)
and spin are assigned as metal-local properties.

Figure 5. Empty-site structure β-HOMO level (in eV) vs ΔEoxo (in
kcal/mol) for the 712 structures in the equatorially symmetric set,
colored by metal identity. Four representative structures are shown as
insets: (top left) S = 0 Co(V)O(CO)4(NH3), (top right) S = 1/2
Fe(V)O(acac)2(CN

−), (bottom left) S = 0 Mn(V)O(CO)5,
(bottom right) S = 1 Cr(IV)O(H2O)4(Cl

−). Atoms are colored as
follows: purple for Mn, pink for Co, light blue for Cr, red for O, blue
for N, white for H, gray for C, and green for Cl. Cyan rectangles for
Zone 1 (bottom, left) and Zone 2 (top, right) are also shown.
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state complex oxidative stability) and oxo formation energies
(e.g., for reactivity).
Given the weak correlation between the β-HOMO level and

ΔEoxo, we developed a separate ML model to predict the β-
HOMO level. We trained RF-RFA KRR models on the ES data
set to obtain a test MAE of 0.44 eV that was somewhat higher
than our prior frontier orbital energy models98 (Supporting
Information Figures S23−S26). Analyzing the 33 selected
features for the RF-RFA β-HOMO level KRR model reveals
the physical basis for the weak correlation between the
properties (Figure 4 and Supporting Information Figure S27
and Table S14). The 33 features selected for β-HOMO level
prediction are predominantly global (76%) and third
coordination sphere (21%) properties that now include an
enhanced dependence on the coordination of atoms in the
structure (i.e., T or I RACs), with only weak contributions
from the metal or second coordination sphere (χ only) and
none from the first coordination sphere. Given the strong role
of complex size and ligand character in determining the β-
HOMO level, ligand chemistry or metal identity would need to
be fixed to establish a correlation to oxo formation energies.
4.4. Enumeration of a Theoretical Catalyst Space.

From the 29 ligands originally considered in the ES data set,
there is a theoretical space of 9860 transition metal complexes
formed from all allowed combinations of metals, oxidation and
spin states, and ligands. Although this space is inherently
interpolative in nature, only 7.2% (712 points: 570 in train,
142 in test) of this compound space was used during model
construction. Failed calculations account for 9.5% (938 points)
of the space, but the remaining 83.3% (8210 points) are
complexes for which no DFT calculation had been attempted.
We switch from KRR to ANN models for the full space
enumeration due to our experience103 that ANNs generalize
better than KRR models at the cost of being harder to interpret
(Supporting Information Figures S28−S34).
The ΔEoxo and β-HOMO level value ranges across the ML-

model-enumerated theoretical space suggest wide coverage of
the full range of β-HOMO level values within a single metal
and significant overlap across metals for ΔEoxo values
(Supporting Information Figure S35). To confirm these
observations, we obtained DFT validation results on a set of
277 previously unseen complexes obtained from ML model
minimum, median, or maximum ΔEoxo values for each metal
(Supporting Information Figures S31, S32, and S35 and Table
S15). These new DFT results further reinforce the observation
that ΔEoxo values and the β-HOMO level can be tuned
independently. As an example of this design exception, a 14 eV
variation in β-HOMO level is observed with limited change in
ΔEoxo for two Co(V)O complexes: Co(V)O(acac)2(Cl

−)
(β-HOMO = −6.2 eV, ΔEoxo = 47.3 kcal/mol) vs Co(V)
O(NH3)4(OMe2) (β-HOMO = −20.6 eV, ΔEoxo = 43.0 kcal/
mol) (Figure 5 and Supporting Information Figure S36).
Because the points selected for validation were ΔEoxo

extrema in the ML-model-interpolated space, many such
points exceed the bounds of the original 712 DFT points in the
ES data set and are extrapolative in property space. For
example, singlet Mn(V)O complexes with equatorial
phosphine ligands and weak-field (e.g., H2O −73 kcal/mol
or misc −68 kcal/mol) axial ligands have even more favorable
ΔEoxo values than had been observed (singlet Mn(V)
O(pyrrole)4(H2O) −67 kcal/mol) before (Figure 6). Although
most Fe(IV)O complexes have favorable ΔEoxo values, three
new singlet Fe(IV)O(CO)4(ax) complexes (e.g., ax =

pyridine 37 kcal/mol) exceed the original ES data set’s highest
ΔEoxo value compound (Fe(IV)O(misc)5 28 kcal/mol),
reinforcing equatorial CO as unfavorable for oxo formation
across a range of axial ligands (Figure 6). The quintet
Co(V)O(CN−)4(H2O) with the most favorable ΔEoxo value
(−28 kcal/mol) in the ES data set has also been exceeded by
as much as 13 kcal/mol in the likely ground state singlet
Co(V)O(PH3)4(CH3CN) (−41 kcal/mol, Figure 6).
Analysis of simultaneously deep β-HOMO levels (<−15 eV)
and favorable ΔEoxo values (<−50 kcal/mol) in the new DFT
data set reveals that in addition to singlet Mn(V)O
complexes with N-coordinating ligands that we observed in
the original ES data set, we now confirm that equatorial PH3
and weak-field axial ligands (i.e., singlet Mn(V)O(PH3)4(ax)
where ax = misc, Cl−, furan, or water) populate this zone
(Supporting Information Table S16).
Across the ANN-enumerated space, the ranges of metal-

dependent ΔEoxo values agree with the observation131 that
increasing d-electron count makes ΔEoxo increasingly unfavor-
able as M−O π* antibonding orbitals132,133 become occupied
(e.g., Fe or Co in Figure 7). The oxo formation energies for Cr
and Mn complexes remain exothermic with an exceedingly
small fraction (2.8%, 33 of 1160) of strong-field (e.g., CO)
Mn(V) endothermic complexes.
Although spin-state dependence is expected85 in Fe(IV)O

and its isoelectronic analogue, Co(V)O, with more favorable
ΔEoxo values for HS and IS than LS, the enumerated data set
reveals deeper chemical trends (Figure 7). The Fe(IV)O
complexes have the highest spin-state dependence when CO or
CN− are equatorial ligands, as is expected (favorable HS, IS;
unfavorable LS, Supporting Information Figure S37). Weak-
ening the equatorial or axial ligand (e.g., to H2O or Cl−)
lessens this spin-state-dependent effect (Supporting Informa-
tion Figures S37 and S38). Little spin-state dependence is
evident in the Fe(V)O complexes, which generally have
similar LS and HS ΔEoxo values (Supporting Information
Figure S39). Starting from a weak equatorial ligand (e.g.,
water) in Fe(IV)O without any apparent spin-state
dependence and introducing strong-field ligands recovers
moderate spin-state dependence on ΔEoxo with favorable IS
but unfavorable LS or HS values (Supporting Information
Figures S37 and S38). Although isoelectronic Co(V)O
shows variation in the magnitudes of LS, IS, and HS ΔEoxo
values, nearly all are unfavorable (Supporting Information
Figure S40). Interestingly, the combination of strong-field
equatorial CO ligands with a weak-field (e.g., water) axial
ligand that was observed to lessen Fe(IV)O spin-state

Figure 6. Three extreme points from the new data set with their
ΔEoxo values: singlet Mn(V)O(PH3)4(H2O) (left), singlet
F e ( I V ) ( CO ) 4 ( p y r i d i n e ) ( m i d d l e ) , a n d s i n g l e t
Co(V)O(PH3)4(CH3CN) (right). Atoms in the stick structures
of each lead compound are as follows: purple for Mn, dark orange for
Fe, pink for Co, blue for N, gray for C, red for O, white for H, and
orange for P.
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dependence is instead predicted to strengthen Co(V)O
complex spin-state dependence (Supporting Information
Figures S37 and S40).
To broadly uncover the governing factors in ΔEoxo values,

we carried out decision tree analysis on all enumerated Fe and
Co ES-compatible complexes. Indeed, spin state is the largest
driver for favorability, with most IS or HS complexes having
favorable ΔEoxo values (Figure 8). For the less stable high-spin
Fe(V) complexes, strong-field ligand atoms in the equatorial
plane first and second coordination spheres (e.g., P−C, P−H,
and N−C first/second S) result in favorable ΔEoxo values in
the majority of cases (96%, Figure 8). Although such strong-
field ligands are likely to bias toward LS ground states, this
composition of the metal environment also is correlated with
favorable ΔEoxo values for both Fe(IV)O and Fe(V)O
low-spin complexes (73%, Figure 8).
For Co, trends are less clear, likely because so few

Co(IV/V)O complexes are stable (Figures 7 and 8). From
the decision tree analysis, IS and HS PMe3 Co−oxo complexes
are likely to have favorable ΔEoxo values, but these are unlikely
to be ground states (Figure 8). Indeed, from all interpolated
complexes, only 11.8% (342 of 2900) are predicted by the
ANN to have favorable ΔEoxo values, and most have high- or
intermediate-spin Co complexed with equatorial pnictogen
atoms (108 N and 127 P) and axial strong-field coordinating
atoms (129 C, 98 N, and 43 P). Although ligand field
arguments suggest that HS or IS Co complexes would be rare,
observations from our enumeration are consistent with the

recent isolation and spectroscopic characterization of a
metastable, N-coordinating complex, quartet [(13-TMC)Co-
(IV)O]2+ (13-TMC is 1,4,7,10-tetramethyl-1,4,7,10-tetraa-
zacyclotridecane).134

4.5. ML-Driven Catalyst Space Exploration. Inspired by
the possibility of orthogonal empty-site β-HOMO level and
ΔEoxo tuning, we set out to search a larger design space of
transition metal complexes. Our aim was to populate zones of
empty-site β-HOMO level and ΔEoxo that were under-
populated in our original screen and that generally defy
chemical intuition. For example, equatorially symmetric model
catalysts could defy expectations by having (i) shallow empty-
site β-HOMO levels, i.e., low ionization potentials, in
combination with unfavorable ΔEoxo, or (ii) deep empty-site
β-HOMO levels, i.e., high ionization potentials, and favorable
ΔEoxo. In either case, we expect ANN-accelerated screening to
reveal what catalyst model chemistries are most suited to
breaking the relationship between resting state ionization
potential and oxo formation favorability.
To carry out exploration beyond interpolative enumeration,

we expanded the possible design space to a total of 56 different
ligands (39 monodentate, 17 multidentate) in ES-compatible
combinations, i.e., 27 more than the 29 originally included in
the ES data set (Supporting Information Figure S41 and Table
S17). Although several ligands were previously in the EA data
set, we incorporated common ligands (e.g., tetraphenylpor-
phyrin, phthalocyanine, bipyrimidine) and functionalizations of
ES ligands (e.g., phendione, phenacac, mebpy). These new
ligands enlarge the design space to 37 128 complexes
(Supporting Information Table S18).
To accelerate discovery we combined our independent

ANNs with a genetic algorithm (GA) optimization that we
previously demonstrated for designing transition metal
complexes with near-degenerate spin-splitting energies102 and
targeted band gaps.98 For the present GA to optimize β-
HOMO levels and ΔEoxo simultaneously, we employed a
composite fitness function with distance awareness to avoid

Figure 7. Distribution of oxo formation energies (in kcal/mol, bin
size 10 kcal/mol) as predicted by the ANN for the 9860 equatorially
symmetric complex space. Unnormalized counts are shown on the y
axis, and histogram is colored by spin (red for low spin, LS, green for
intermediate spin, IS, and blue for high spin, HS). The stacked
histogram is shaded by oxidation state, with oxidation state +5
complexes represented by translucent coloring and oxidation state +4
complexes represented by opaque coloring.

Figure 8. Decision tree analysis for essential descriptors of favorability
for Fe (top) and Co (bottom) ANN-predicted ΔEoxo binary decision
tree divided by favorable (ΔE < 0, blue) and unfavorable (ΔE > 0,
orange) for up to three levels total. Each leaf shows the percent of
data corresponding to the case and total number of interpolated-space
ANN values that correspond to each leaf.
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points where the ANN will lack predictive power (Supporting
Information Text S1, Figure S42, and Table S19). We then
targeted two distinct regions of property space. For the first
targeted zone (Zone 1), we selected ΔEoxo between −40 and
−50 kcal/mol along with a simultaneous empty-site β-HOMO
level between −20 and −15 eV. Five ES complexes (train 5,
test 0) are within this range, all of which are singlet Mn(V)
O coordinated in the equatorial plane by nitrogen atoms (e.g.,
ammonia or bpy see Figure 5). For the second targeted zone
(Zone 2), we selected ΔEoxo between 10 and 20 kcal/mol
along with a simultaneous empty-site β-HOMO level between
−5 and 0 eV. Six ES data points (train 5, test 1), two Fe(IV)
O and four isoelectronic Co(V)O complexes, with
negatively charged equatorial ligands reside in this zone. A
GA approach is expected to help enrich both zones, where
Zone 1 corresponds to a likely desired, stable catalyst, whereas
Zone 2 corresponds to catalysts with less favorable energetics
than would be predicted by the β-HOMO descriptor.
The composite-objective distance-controlled GA was run 10

times each for Zones 1 and 2 (Supporting Information Figures
S43 and S44). For each zone, 50 leads (out of 137 total leads)
generated from the runs were selected for further study with
DFT. The majority of such structures correspond to unstable
molecules at the DFT level, explaining why they were sparsely
populated in our original DFT data set: only approximately
25% of the data (Zone 1: 13 leads, Zone 2: 15 leads) passed
our standard electronic or geometric structure135 checks
(Supporting Information Table S20).
For Zone 1, i.e., favorable ΔEoxo and high ionization

potential, four new DFT lead compounds fully satisfy both
criteria, nearly doubling the data we had in this range of
properties, and the remaining complexes all satisfy the β-
HOMO level range but fall narrowly below or above the target
ΔEoxo (Supporting Information Table S20). All four leads that
fully satisfy the Zone 1 criteria are again singlet Mn(V)O
model catalysts, and three have the equatorial 2,2′-byprimidine
ligand (bpym) that we introduced in the extended GA design
space with a range of intermediate-field axial ligands (e.g., with
a new imidazoline axial ligand, Figure 9 and Supporting
Information Figure S41 and Table S17). Thus, DFT-validated
lead compounds from the GA maintain and strengthen the
observation that N-coordinated singlet Mn(V)O model
catalysts will have favorable ΔEoxo and deep β-HOMO levels.
Although the remaining 9 leads fall outside the Zone 1 target
for ΔEoxo, five cases are doublet Cr(V)O complexes that still
satisfy the deep β-HOMO level target (Supporting Information
Table S20). The doublet Cr(V)O(CN-pyr)4(misc) is
nearest to Zone 1 (DFT ΔEoxo = −32 kcal/mol, β-HOMO
= −16.5 eV), but the ANN predictions are eroded here due to
the limited number of similar compounds in the training data.
Overall, these DFT leads enhance data density in and around
Zone 1. These complexes could be the focus of future
computational study in selective partial oxidation (e.g., to
understand the potential effect of deep β-HOMO levels).
For Zone 2, i.e., the unexpected combination of unfavorable

ΔEoxo and shallow β-HOMO level, two leads fall fully within
both ranges after DFT validation and an additional four satisfy
one of the two criteria. The two Zone 2 leads are quintet
Fe(IV)O or quartet Co(IV)O porphyrin complexes with
axial functionalized-isocyanide ligands (Figure 9). No prior
training data in this zone had been Co(IV)O, emphasizing
the ability of this approach to discover new chemistry. All four
leads that satisfy one of the two Zone 2 ranges are also

Co(IV)O complexes, e.g., (i) quartet complexes with
equatorial acac ligands that have slightly more favorable DFT
ΔEoxo values (1−4 kcal/mol) than predicted by the ANN and
(ii) a quartet complex with neutral furan equatorial ligands in
combination with an expanded design space phosphorine axial
ligand that has a weakly positive β-HOMO (1 eV, Supporting
Information Table S20). For the remaining cases that failed to
meet both Zone 2 criteria, most have weakly more favorable
ΔEoxo values combined with less favorable (i.e., positive) β-
HOMO levels. These complexes represent cases where design
based on β-HOMO level would fail and could therefore be
used in future study to understand the limitations of QM
descriptors for reactions involving oxo intermediates.

5. CONCLUSIONS
We trained ML models capable of predicting oxo formation
reaction energies across a range of first-row metals, oxidation
states, and spin states. With feature-selected ML models, we
achieved set-aside test mean absolute errors of 4−5 kcal/mol
across a range of ligand orientations. These comparable errors
to other properties of open-shell transition metal complexes
(e.g., ionization potential) suggest that spin-state-dependent
catalyst structure−property relationships are no more challeng-
ing a learning task. Using feature selection, we observed that
the most important features for predicting oxo formation
energies were more nonlocal in nature than for spin-state
ordering, likely due to enhanced importance of through-bond
electronic effects in determining the stability of metal−oxo
intermediates. We then used an ML model to enumerate the
space spanned by our ligand set, enabling widespread
determination of spin- and metal-dependent trends. The
enumeration also revealed unexpected metal/ligand-property
relationships, such as reduced spin-state dependence in
Fe(IV)O complexes with strong-field equatorial ligands

Figure 9. Leads from the GA exploration, as predicted by the ANN
and validated by DFT, that are observed for the two targeted zones 1
and 2 as described in the main text. Leads using ligands from the
original equatorially symmetric ligand pool are labeled as
“interpolative”, and leads using ligands from a distinct, expanded
ligand pool are labeled as “extrapolative”. Atoms in the stick structures
of each lead compound are as follows: purple for Mn, orange for Fe,
pink for Co, blue for N, gray for C, red for O, and white for H.
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and weak-field axial ligands that instead increased spin-state
dependence for Co(V)O complexes.
In contrast with earlier computational screens where the β-

HOMO level of an M(II) complex could be shown to predict
its M(IV)O stability, we observed only weak correlation
over our DFT data sets. Full ANN enumeration of both
properties in this space revealed opportunities to break this
design rule by producing oxidatively stable complexes that
favorably form oxo intermediates. We then expanded the
search space to over 37 000 catalysts by introducing new
ligands and used a multicomponent GA to discover candidate
catalysts that defy expectations but could still be confidently
predicted by our ANN models. Using this approach, we
identified both favorable oxo formation energies for oxidatively
stable complexes (i.e., a typical target for a catalyst screen) and
unfavorable oxo formation energies for oxidatively unstable
complexes (i.e., a combination unexpected by intuition). This
approach doubled the number of DFT hits that satisfied these
constraints, including complexes distinct from what had been
seen before in DFT training data. These observations point to
the opportunities for ML-model driven discovery to both
identify desirable catalysts where Edisonian approaches have
failed and to find ways to break rules when known exceptions
are limited. Next steps beyond the current approach will be to
consider multiple reaction steps, transition states, and through-
space interactions neglected thus far in our representations.
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structure energetic HOMO level; comparison of
previously published frontier orbital energetics data set
to equatorially symmetric data set; application of
previously published model for frontier orbital energetics
on equatorially symmetric data; full enumeration
predictions by the feature-selected KRR/ANN models;
histogram of deviations between the feature-selected
KRR and ANN models; ANN enumerated oxo
formation energy vs β-HOMO level; placement of oxo
formation energy and β-HOMO level for a 277 molecule
validation set; plot of absolute errors for β-HOMO level

and oxo formation energy; expanded ligand space used
in the genetic algorithm (GA) exploration; latent
distance cutoff calibration; evolution of the GA by
generation for both zones; average distance and diversity
over the 10 replicates for each targeted zone; examples
for feature space vs latent space distances (PDF)
Structures from the equatorially symmetric data set; 277
molecule DFT validation data set; GA lead compounds
from Zones 1 and 2; raw electronic energies for the
equatorially symmetric data set (B3LYP/LACVP* and
M06L/def2-TZVP), equatorially asymmetric data set,
277 molecule DFT validation data set, and GA lead
compounds from Zones 1 and 2; RAC featurization for
equatorially symmetric and equatorially asymmetric data
sets (ZIP)
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